CHEBOTAREV, N. T. (1960). Atomnaya Energiya, 10, 43. COTTRELL, A. H. (1960). Nucl. Power, 5, 130. GIBSON, J. B., GOLAND, A. N., MILGRAM, M. & VINEYARD,

G. H. (1960). Phys. Rev. 120, 1229.

GOLAND, A. N. (1962). Ann. Rev. Nucl. Sci. 12, 243.

KERNOHAN, R. H., BILLINGTON, D. S. & LEWIS, A. B. (1956). J. Appl. Phys. 27, 40.

KINCHIN, G. H. & PEASE, R. S. (1955). Rep. Progr. Phys. 18, 1.

KING, H. W. & MASSALKI, T. B. (1962). J. Inst. Met. 90, 486.

KONABEEVSKY, S. T., PRAVDYUK, N. F. & KUTAITSEV, V. I. (1956). Proc. 1st Intern. Conf. Peaceful Uses Atomic Energy, 7, 433.

SAENKO, G. P. (1964). J. Nucl. Mat. 11, 220.

SPOONER, F. J. & WILSON, C. G. (1964). Acta Cryst. 17, 1533.

WILSON, C. G. (1963). Acta Cryst. 16, 724.

YAKEL, H. L. & BORIE, B. (1963). Acta Cryst. 16, 589.

Acta Cryst. (1965). 19, 14

# Phases Cubiques Type Th<sub>3</sub>P<sub>4</sub> dans les Sulfures, les Séléniures et les Tellurures L<sub>2</sub>X<sub>3</sub> et L<sub>3</sub>X<sub>4</sub> des Terres Rares, et dans leurs Combinaisons ML<sub>2</sub>X<sub>4</sub> avec les Sulfures et Séléniures MX de Calcium, Strontium et Baryum. Formation et Propriétés Cristallines

PAR J. FLAHAUT, M. GUITTARD, M. PATRIE, M. P. PARDO, S. M. GOLABI ET L. DOMANGE

Laboratoire de Chimie Minérale, Faculté de Pharmacie de Paris, 4 Avenue de l'Observatoire, Paris, France

#### (Reçu le 8 octobre 1964)

A survey has been made of the crystal structures of the rare earth sulfides, selenides and tellurides of composition  $L_2X_3$ , of compounds of composition  $L_3X_4$  and  $L_2X_3$  having the Th<sub>3</sub>P<sub>4</sub> structure type, and of the existence of homogeneity ranges between these two limits of composition; also of the crystal structures of the ML<sub>2</sub>X<sub>4</sub> compounds (L=rare earth, M=Mg, Ca, Sr, Ba and X=S or Se), of the Th<sub>3</sub>P<sub>4</sub>-type compounds of this composition and of homogeneity ranges between ML<sub>2</sub>X<sub>4</sub> and L<sub>2</sub>X<sub>3</sub>.

En 1949, Zachariasen (1948, 1949) a établi que le sulfure Ce<sub>2</sub>S<sub>3</sub> possédait le type structural Th<sub>3</sub>P<sub>4</sub>. Dans cette structure cubique à faces centrées qui appartient au groupe d'espace  $I\overline{4}3d$  ( $T_d^6$ ), les atomes métalliques ont les positions 12(k) des tables internationales, et les atomes de métalloïde les positions 16(f). Zachariasen a montré que, dans Ce<sub>2</sub>S<sub>3</sub>, les atomes de soufre occupent tous les sites du réseau des anions, et que le réseau des atomes de cérium est lacunaire, avec distribution désordonnée des lacunes. Il y a dans ces conditions  $\frac{13}{6}$  de molécules Ce<sub>2</sub>S<sub>3</sub> par maille cubique.

Depuis 1954, nous avons étudié les sulfures, séléniures et tellurures formés par tous les éléments des terres rares, ainsi que leurs combinaisons avec les sulfures, les séléniures et les tellurures d'autres éléments métalliques. De nombreux composés, parmi ceux que nous avons isolés, possèdent le type structural  $Th_3P_4$ . De plus, des domaines d'homogénéité importants ont également ce type cristallin. Le présent mémoire leur est plus spécialement consacré.

Nous joindrons, dans cette étude, l'yttrium et le scandium aux éléments des terres rares. En effet, lorsque l'on intercale ces éléments dans la série des terres rares en des places correspondant à leur rayon ionique, on ne constate aucune discontinuité dans l'ensemble des propriétés physico-chimiques et structurales des composés considérés. L'yttrium a généralement sa place au voisinage de l'holmium. Le scandium se place naturellement après le dernier élément des terres rares, puisque son rayon est nettement plus petit.

## Composés $L_2X_3$ (L=terre rare, Y, Sc; X=S, Se ou Te)

Les sulfures et les séléniures sont préparés par action de l'hydrogène sulfuré ou de l'hydrogène sélénié sur les oxydes de terre rare vers 1200-1300 °C, dans des fours à induction haute fréquence. Cependant, avec les éléments de tête de la série des terres rares, on obtient ainsi le polyséléniures  $L_2Se_4$  qu'il est ensuite nécessaire de dissocier ultérieurement par chauffage sous vide (Guittard, Benacerraf & Flahaut, 1964). Les tellurures sont préparés par union directe des éléments en ampoule scellée sous vide, vers 1000 °C.

De nombreux types cristallins ont été observés pour les composés stoechiométriques  $L_2X_3$ , dont la répartition est donnée dans le Tableau 1. De plus, en dehors de ces composés, existent des phases non stoechiométriques de type Th<sub>3</sub>P<sub>4</sub> de compositions voisines de  $L_2X_3$  et qui sont figurées en pointillé. Nous avons proposé de désigner les différents types cristallins à l'aide des lettres grecques suivantes:

- α: structure observée chez les sulfures, du cérium au dysprosium. Elle est stable à basse température (Flahaut, Domange, Guittard, Pardo & Patrie, 1963).
- β: structure propre aux sulfures des premiers éléments des terres rares, jusqu'au néodyme. Elle provient réversiblement de α ou de γ par chauffage prolongé à température moyennement élevée (Flahaut *et al.* 1963). Les systèmes cristallins des deux structures α et β sont inconnus.
- $\gamma$ : structure cubique type Th<sub>3</sub>P<sub>4</sub>. Elle est la seule à se rencontrer à la fois chez les sulfures, les séléniures et les tellurures, avec les éléments de tête de la série des terres rares. Dans le cas des sulfures, elle constitue la forme stable à haute température (Flahaut *et al.* 1963). La coordinence de la terre rare est 8.
- $\delta$ : structure monoclinique observée seulement chez les sulfures, du dysprosium au thulium et pour l'yttrium (Flahaut, Guittard, Loriers & Patrie, 1959).
- $\varepsilon$ : structure rhomboédrique type Al<sub>2</sub>O<sub>3</sub> $\alpha$  caractéristique des deux sulfures Yb<sub>2</sub>S<sub>3</sub> et Lu<sub>2</sub>S<sub>3</sub> (Flahaut, Domange & Pardo, 1964). La coordinence du métal est 6.
- η: structure orthorhombique type U<sub>2</sub>S<sub>3</sub> observée avec les séléniures Gd<sub>2</sub>Se<sub>3</sub>, Tb<sub>2</sub>Se<sub>3</sub> et Dy<sub>2</sub>Se<sub>3</sub> et les tellurures Nd<sub>2</sub>Te<sub>3</sub>, Sm<sub>2</sub>Te<sub>3</sub> et Gd<sub>2</sub>Te<sub>3</sub> (Flahaut, Domange, Guittard & Pardo, 1955). La coordinence du métal est 7.

ζ: structure orthorhombique type Sc<sub>2</sub>S<sub>3</sub> (Guittard et al., 1964; Flahaut et al., 1963; Flahaut, Laruelle, Pardo & Guittard, 1965) observée chez les séléniures et les tellurures pour les derniers éléments de la série des terres rares, et seulement pour le scandium dans le cas des sulfures. La coordinence du métal est 6.

On remarque dans le Tableau 1 que les types cristallins des composés  $L_2X_3$  sont les mêmes chez les séléniures et les tellurures. On observe seulement, en passant des séléniures aux tellurures, un déplacement de ces types vers les éléments des terres rares de grands rayons ioniques. Les types cristallins des sulfures sont plus nombreux et – exception faite du type  $\gamma$  et de celui de  $Sc_2S_3$  – sont propres à ces composés.

Dans tous les cas, la coordinence de la terre rare passe de la valeur 8 observée en tête de série (type  $\gamma$ ), à la valeur 6 réalisée avec derniers éléments (types  $\varepsilon$  et  $\zeta$ ). Dans les cas des séléniures et des tellurures des éléments intermédiaires de la série, pour lesquels la structure est complètement connue (Flahaut, Domange, Guittard & Pardo, 1964), la coordinence possède la valeur 7. L'évolution de la coordinence est donc très régulière. On note de plus que, pour un même élément, la coordinence a tendance à diminuer en allant des sulfures, aux séléniures, puis aux tellurures.

Le Tableau 2 reproduit les paramètres mesurés pour les sulfures, séléniures et tellurures stoechiométriques  $L_2X_3$  cubiques type  $Ce_2S_3$  ou Th<sub>3</sub>P<sub>4</sub>. On remarque que l'europium ne possède pas de composés  $L_2X_3$ , en accord avec la grande stabilité de sa valence II.



Tableau 2. Paramètres des composés L<sub>2</sub>X<sub>3</sub> et des phases non stoechiométriques de compositions voisines des L<sub>2</sub>X<sub>3</sub> (désignées par L<sub>2</sub>X<sub>3-n</sub>, n désignant l'écart à la stoechiométrie), cubiques de type Th<sub>3</sub>P<sub>4</sub>.

|                  |             | ,, 1                             | ~ 1 · ·   | 5 4                             |       |
|------------------|-------------|----------------------------------|-----------|---------------------------------|-------|
| $L_{2}S_{3}^{*}$ | a (Å)       | L <sub>2</sub> Se <sub>3</sub> † | a (Å)     | $L_2Te_3$ <sup>‡</sup>          | a (Å) |
| $La_2S_3$        | 8,731       | $La_2Se_3$                       | 9,055     | $La_2Te_3$                      | 9,627 |
| $Ce_2S_3$        | 8,630       | Ce <sub>2</sub> Se <sub>3</sub>  | 8,963     | Ce <sub>2</sub> Te <sub>3</sub> | 9,539 |
| $Pr_2S_3$        | 8,573       | $Pr_2Se_3$                       | 8,927     | Pr <sub>2</sub> Te <sub>3</sub> | 9,481 |
| $Nd_2S_3$        | 8,527       | $Nd_2Se_3$                       | 8,859     | $Nd_2Te_{3-n}$                  | 9,435 |
| $Sm_2S_3$        | 8,448       | $Sm_2Se_3$                       | 8,785     | Sm2Te2,76                       | 9,479 |
| $Gd_2S_3$        | 8,387       | $Gd_2Se_{3-n}$                   | 8,718     | _                               |       |
| $Tb_2S_3$        | 8,334       | $Tb_2Se_{3-n}$                   | 8,68      |                                 |       |
| $Dy_2S_{3-n}$    | 8,292       | $Dy_2Se_{3-n}$                   | 8,622     | —                               |       |
| *                | Picon et al | . (1960)                         | ‡ Pardo d | et al. (1963)                   |       |
| +                | Guittard e  | al (1964)                        | •         |                                 |       |

† Guittard *et al*. (1964)

Dans le Tableau 2 figurent également les paramètres des phases non stoechiométriques du type  $Th_3P_4$ , de formules voisines de  $L_2X_3$ . La plupart de leurs formules sont inconnues. Dans le cas du tellurure de samarium, pour lequel, comme nous le verrons, la variation de composition est accompagnée d'une grande variation des paramètres, la limite supérieure de la phase  $Th_3P_4$ a été fixée à environ  $Sm_2Te_{2,76}$ .

# Composés L<sub>3</sub>X<sub>4</sub>

Un sulfure Ce<sub>3</sub>S<sub>4</sub> a été signalé pour la première fois par Eastman et ses collaborateurs (Eastman, Brewer, Bromley, Gilles & Lofgren, 1950; Eastman, Brewer, Bromley, Gilles & Lofgren, 1951) et étudié du point de vue cristallographique par Zachariasen (1948, 1949). Ce composé est cubique de type Th<sub>3</sub>P<sub>4</sub> et l'on a un domaine d'homogénéité continu entre Ce<sub>2</sub>S<sub>3</sub> (a =8,6076 kX) et Ce<sub>3</sub>S<sub>4</sub> (a = 8,6173 kX à 22°C).

Nous avons observé (Tableau 3) que les composés  $L_3X_4$  se forment du lanthane à l'europium dans le cas des sulfures (Picon, Domange, Flahaut, Guittard & Patrie, 1960), du lanthane au samarium dans le cas des séléniures (Guittard *et. al.*, 1964) et des tellurures (Pardo, Flahaut & Domange, 1964). On remarque la diminution de la stabilité de l'ion Eu<sup>3+</sup> en allant des sulfures aux séléniures et aux tellurures.

Pour les éléments des terres rares typiquement trivalents (La, Ce, Pr, Nd) le paramètre des composés  $L_3X_4$  est le même que celui des composés  $L_2X_3$  à un pour mille près. Cela provient de ce qu'il existe toujours des ions  $L^{3+}$  quelle que soit la composition, et que les liaisons métalliques (qui apparaissent lorsque l'égalité

Tableau 3. Paramètres des composés  $L_3X_4$ cubiques type  $Th_3P_4$ 

| 1.8.*                          | a (Å) | L-Se.t   | $a(\mathbf{\hat{A}})$ | I.Te.+   | a (Å)          |
|--------------------------------|-------|----------|-----------------------|----------|----------------|
| L354                           | 8 730 | Lase     | 0 055                 | LaTe.    | 0 631          |
| CesS.                          | 8 626 | CesSe    | 8 973                 | CesTes   | 9,034          |
| Dr.S.                          | 8 575 | Dr. Se.  | 8 973                 | Dr. To   | 9,340          |
| Nd.S.                          | 8,575 | Nd-Se    | 8 8 50                | Nd Ta    | 9,40/          |
| Sm S                           | 0,524 | Sm.So    | 0,033                 | Sm To    | 9,430<br>0,506 |
| SIII354                        | 0,550 | 51113564 | 0,094                 | 51113164 | 9,000          |
| Eu <sub>3</sub> S <sub>4</sub> | 8.537 |          |                       |          |                |

\* Picon et al. (1960).

† Guittard et. al. (1964).

‡ Pardo et al. (1963).

des charges des ions n'est pas réalisée) n'entraînent pas de changement dans la longueur des liaisons. Dans les composés  $L_3X_4$  du samarium et de l'europium, les mesures magnétiques montrent la présence d'un ion divalent pour deux ions trivalents. Le rayon des ions divalents étant très supérieur à celui des ions trivalents, les paramètres croissent régulièrement dans le domaine d'homogénéité entre  $L_2X_3$  et  $L_3X_4$ .

Les domaines d'homogénéité ne sont pas toujours limités aux compositions extrêmes  $L_2X_3$  et  $L_3X_4$ . Nous avons constaté les exceptions suivantes:

Dans le cas des sulfures, on observe la présence des composés  $Gd_2S_3$  et  $Dy_2S_3$ , tandis que les composés  $L_3X_4$  correspondants n'ont pu être préparés : il se forme toujours pour cette dernière composition des mélanges de la phase  $Th_3P_4$  et du composé LX. Il est probable qu'un domaine d'homogénité existe au voisinage de la composition  $L_2X_3$ , vers les teneurs pauvres en soufre, mais on ne peut en préciser l'étendue puisqu'il ne peut être accompagné d'aucune variation de paramètres. Avec le dysprosium, ce domaine est nécessairement étroit par suite de l'existence du composé  $Dy_5S_7$  (Adolphe, Guittard & Laruelle, 1964).

Dans le cas des séléniures de gadolinium et de dysprosium il existe des phases non stoechiométriques de type Th<sub>3</sub>P<sub>4</sub> de composition voisine de LSe<sub>1,40</sub>, alors que nous n'avons pu obtenir les composés  $L_2Se_3$  ou  $L_3Se_4$  correspondants. Il s'agit probablement ici de domaines d'homogénéité relativement étroits.

Dans le cas des tellurures, les composés  $Nd_3Te_4$  et  $Sm_3Te_4$  existent alors que les composés  $L_2X_3$  correspondants possèdent un autre type cristallin (type  $U_2S_3$ ). Un domaine d'homogénéité type  $Th_3P_4$  s'étend à partir de la formule  $L_3Te_4$  vers les teneurs plus riches en tellure. Son étendue n'a pu être précisée que dans le cas du samarium, étant donnée la variation de paramètre qui accompagne le remplacement d'un ion  $Sm^{2+}$  par un ion  $Sm^{3+}$ . On a situé la limite supérieure à la formule approximative  $SmTe_{1,38}$ .

## Composés ML<sub>2</sub>X<sub>4</sub>

Nous avons étudié les composés  $ML_2X_4$  résultant de la combinaison des composés  $L_2X_3$  précédents avec les composés MX pour lesquels M = Mg, Ca, Sr, Ba. Nous n'envisagerons ici que les sulfures et les séléniures, c'est-à-dire que, dans les formules ci-dessus, X = Sou Se.

Nous préparons ces composés soit par union directe des sulfures (ou des séléniures) constituants dans des ampoules de silice scellées sous vide à 1200 °C, soit par action d'hydrogène sulfuré (ou d'hydrogène sélénié) sur un mélange en proportions voulues d'oxyde de terre rare calciné et de carbonate alcalino-terreux desséché, chauffés à 1250-1300 °C par un dispositif à induction haute fréquence.

La répartition des types cristallins parmi les composés  $ML_2X_4$  est schématisée dans les Tableaux 4 et 5. Les lettres désignent les types cristallins suivants: Tableau 4. Types cristallins des sulfures  $ML_2S_4$ 

|    |    |    |    |      | A  | ortho   | orhomt   | oique, t             | ype inco  | nnu      |       |       |       |       |      |
|----|----|----|----|------|----|---------|----------|----------------------|-----------|----------|-------|-------|-------|-------|------|
|    |    |    |    |      | A' | struc   | ture in  | connue               | ;         |          |       |       |       |       |      |
|    |    |    |    |      | Т  | cubic   | que, typ | be Th <sub>3</sub> l | P4        |          |       |       |       |       |      |
|    |    |    |    |      | В  | ortho   | orhomb   | bique ty             | ype CaF   | $e_2O_4$ |       |       |       |       |      |
|    |    |    |    |      | С  | cubic   | que, ty  | pe spin              | elle      |          |       |       |       |       |      |
|    |    |    |    |      | D, | F types | cristal  | llins in             | connus    |          |       |       |       |       |      |
|    |    |    |    |      | 0  | pas c   | ie com   | binaiso              | ns défini | ies      |       |       |       |       |      |
|    | La | Ce | Pr | Nd   | Sm | Gd      | Tb       | Dy                   | (Y)       | Но       | Er    | Tm    | Yb    | Lu    | (Sc) |
| Mg | 0  | 0  | 0  | 0    | 0  | 0       | A        | Å                    | Â         | A        | A     | С     | С     | С     | Ċ    |
| Ca | Т  | Т  | Т  | Т    | Т  | Т       | Т        | Т                    | A, A'     | A, A'    | A, A' | A, A' | A, A' | A, A' | D    |
| Sr | Т  | Т  | Т  | Т    | Т  | Т       | В        | В                    | B         | B        | B     | B     | B     | B     | D    |
| Ba | т  | T  | T  | T. B | B  | B       | B        | B                    | В         | B        | B     | B     | B     | B     | F    |

| Tableau 5. Reputition des types cristations parmit les composes milisor | Tableau 5. | Répartition d | des types | cristallins | parmi l | 'es com | posés | ML₂Se₄ |
|-------------------------------------------------------------------------|------------|---------------|-----------|-------------|---------|---------|-------|--------|
|-------------------------------------------------------------------------|------------|---------------|-----------|-------------|---------|---------|-------|--------|

| -                    |                        |                        |                        |                    | <i>I</i> cubi<br><i>B</i> orth<br><i>C</i> cubi<br><i>R</i> rhor<br>O pas | que, ty<br>orhom<br>que tyj<br>nboédr<br>de com | pe 1h <sub>3</sub><br>bique,<br>pe spin<br>iques<br>ibinaiso | type C<br>elle<br>on défi | aFe₂O₄<br>nie.          |                        |                        |                        |                        |                        |
|----------------------|------------------------|------------------------|------------------------|--------------------|---------------------------------------------------------------------------|-------------------------------------------------|--------------------------------------------------------------|---------------------------|-------------------------|------------------------|------------------------|------------------------|------------------------|------------------------|
| Mg<br>Ca<br>Sr<br>Ba | La<br>O<br>O<br>T<br>T | Ce<br>O<br>O<br>T<br>T | Pr<br>O<br>O<br>T<br>T | Nd<br>O<br>T<br>TB | Sm<br>O<br>O<br>T<br>B                                                    | Gd<br>O<br>T<br>B                               | Tb<br>O<br>O<br>B<br>B                                       | Dy<br>O<br>O<br>B<br>B    | (Y)<br>C<br>R<br>B<br>B | Ho<br>C<br>R<br>B<br>B | Er<br>C<br>R<br>B<br>B | Tm<br>C<br>R<br>B<br>B | Yb<br>C<br>R<br>B<br>B | Lu<br>C<br>R<br>B<br>B |

- T: structure cubique type Th<sub>3</sub>P<sub>4</sub> (Flahaut, Domange & Patrie, 1962; Golabi, Flahaut & Domange, 1964). Dans cette structure, le métal M et la terre rare L ont la même coordinence 8.
- A: structure orthorhombique observée seulement chez les sulfures, avec les métaux Mg et Ca. Dans le cas des composés CaL<sub>2</sub>S<sub>4</sub>, qui sont dimorphes, cette structure est stable à basse température.
- A': structure très voisine de la précédente, constituant les formes stables à haute température des composés CaL<sub>2</sub>S<sub>4</sub> dimorphes.
- B: structure orthorhombique, du type CaFe<sub>2</sub>O<sub>4</sub>. La coordinence du métal M est 8, celle de la terre rare 6 (Patrie, Golabi, Flahaut & Domange, 1964).
- C: structure cubique type spinelle, avec répartition normale des cations (Patrie, Flahaut & Domange, 1964; Guittard, Souleau & Farsam, 1964). La coordinence du magnésium est donc 4, celle de la terre rare 6.
- *R*: structure rhomboédrique, observée seulement chez les séléniures. Les coordinences de la terre rare et du métal y ont la même valeur 6.

Dans les cas des composés  $BaNd_2S_4$  et  $BaNd_2S_4$ , qui possèdent deux formes cristallines, la forme stable à haute température a le type  $Th_3P_4$ , et la forme stable à basse température a le type  $CaFe_2O_4$ . Le passage de l'une à l'autre est réversible.

On remarquera enfin l'absence de composés définis  $MgL_2S_4$ ,  $MgL_2Se_4$  et  $CaL_2Se_4$  pour les éléments de tête de la série des terres rares. Mais il existe dans tous ces cas des domaines d'homogénéité de type  $Th_3P_4$ , obtenus par addition des composés MX aux composés  $L_2X_3$ . Nous reviendrons plus loin sur ces phases non stoechiométriques.

Les paramètres des composés  $ML_2X_4$  de type  $Th_3P_4$  sont donnés dans les Tableaux 6 et 7.

Tableau 6. Paramètres des composés  $ML_2S_4$ cubiques de type  $Th_3P_4^*$ 

| M = Ca                           | a (Å) | M = Sr      | a (Å)    | M = Ba      | a (Å) |
|----------------------------------|-------|-------------|----------|-------------|-------|
| $CaLa_2S_4$                      | 8,687 | $SrLa_2S_4$ | 8,790    | $BaLa_2S_4$ | 8,917 |
| $CaCe_2S_4$                      | 8,615 | $SrCe_2S_4$ | 8,718    | $BaCe_2S_4$ | 8,864 |
| $CaPr_2S_4$                      | 8,578 | $SrPr_2S_4$ | 8,682    | $BaPr_2S_4$ | 8,817 |
| $CaNd_2S_4$                      | 8,533 | $SrNd_2S_4$ | 8,649    | $BaNd_2S_4$ | 8,793 |
| $CaSm_2S_4$                      | 8,472 | $SrSm_2S_4$ | 8,595    |             |       |
| $CaGd_2S_4$                      | 8,423 | $SrGd_2S_4$ | 8,551    | _           | —     |
| CaTb <sub>2</sub> S <sub>4</sub> | 8,400 |             | _        |             |       |
| $CaDy_2S_4$                      | 8,376 |             | <u> </u> |             |       |
|                                  |       | _           |          |             |       |

\* Flahaut, Domange & Patrie (1962)

Tableau 7. Paramètres des composés ML<sub>2</sub>Se<sub>4</sub> cubiques de type Th<sub>2</sub>P<sub>4</sub>\*

|                                   | chorques ne  | <i>vype</i> 11314                 |       |
|-----------------------------------|--------------|-----------------------------------|-------|
| M = Sr                            | a (Å)        | M = Ba                            | a (Å) |
| SrLa <sub>2</sub> Se <sub>4</sub> | 9,124        | $BaLa_2Se_4$                      | 9,258 |
| SrCe <sub>2</sub> Se <sub>4</sub> | 9,060        | BaCe <sub>2</sub> Se <sub>4</sub> | 9,186 |
| SrPr <sub>2</sub> Se <sub>4</sub> | 9,019        | $BaPr_2Se_4$                      | 9,150 |
| $SrNd_2Se_4$                      | 8,989        | $BaNd_2Se_4$                      | 9,120 |
| SrSm <sub>2</sub> Se <sub>4</sub> | 8,931        |                                   |       |
| SrGd <sub>2</sub> Se <sub>4</sub> | 8,895        |                                   |       |
| * 64                              | Jahi Elahaut | & Domange (10                     | 61)   |

\* Golabi, Flahaut & Domange (1964)

Dans la structure type Th<sub>3</sub>P<sub>4</sub> de ces composés, on doit admettre que les deux séries d'atomes métalliques M et L occupent de façon désordonnée tous les sites du réseau des atomes métalliques. On ne relève sur les diagrammes de rayons X aucune raie supplémentaire, en dehors de celles qui caractérisent le type Th<sub>3</sub>P<sub>4</sub>, et pour lesquelles on vérifie les conditions suivantes: pour les indices *hkl* la somme h+k+l est paire; pour les indices *hkl*, on a simultanément l=2n et 2h+l=4n.

## Domaines d'homogénéité L<sub>2</sub>X<sub>3</sub>-ML<sub>2</sub>X<sub>4</sub> de type Th<sub>3</sub>P<sub>4</sub>

Des domaines d'homogénite s'observent à partir des sulfures ou des séléniures  $L_2X_3$  qui possèdent le type  $Th_3P_4$ , lorsqu'on leur ajoute des quantités croissantes de certains composés MX.

Ces domaines d'homogénéité peuvent se diviser en deux types, suivant qu'ils s'étendent ou non jusqu'aux composés  $ML_2X_4$ .

(a) Nous avons vu que certains composés  $ML_2X_4$  possèdent la structure type  $Th_3P_4$ . Lorsque cela a lieu, les composés  $L_2X_3$  correspondants ont toujours ce même type cristallin. Dans ces conditions, il existe un domaine d'homogénéité continu s'étendant *de l'un à autre de ces deux composés*. Nous avons choisi, pour mettre en évidence ce phénomène, d'étudier les systèmes possédant les cations les plus petits et ceux possédant les cations les plus grands: il est vraisemblable que le phénomène observé pour les dimensions extrêmes des cations se retrouve également avec ceux de dimensions intermédiaires. Les domaines d'homogénéité étudiés ont été les suivants:

pour les sulfures:

$$Dy_2S_3 - CaDy_2S_4$$
 et  $La_2S_3 - BaLa_2S_4$ .

pour les séléniures:

$$Gd_2Se_3 - SrGd_2Se_4$$
 et  $Ce_2Se_3 - BaCe_2Se_4$ .

Dans le système contenant du calcium, la variation des paramètres est peu importante et semble suivre exactement la loi de Végard. Au contraire, dans les systèmes contenant du baryum, pour lesquels les variations de paramètres deviennent importantes, on observe un net écart avec la loi de Végard.

Les densités mesurées établissent que, dans tous les cas, le réseau des anions (soufre ou sélénium) est complétement rempli. Comme pour les composés  $ML_2X_4$  et pour les mêmes raisons, on doit admettre que les deux cations M et L se substituent de façon désordonnée sur le réseau des ions métalliques. On a la relation

$$[M_x^{2+}L_{(2/3)-(2/3)x}^{3+} \boxed{(1/12)-(1/3)x}]X^{2-}$$

avec  $0 \le x \le \frac{1}{4}$ .

(b) En dehors des domaines d'homogénéité précédents, limités par les composés définis  $L_2X_3$  et  $ML_2X_4$  de type  $Th_3P_4$ , nous avons constaté l'existence de domaines d'homogénéité d'étendues plus réduites, partant toujours du composé  $L_2X_3$  de type  $Th_3P_4$ . Dans ces conditions, les composés  $ML_2X_4$  n'existent pas. C'est le cas des systèmes  $L_2S_3-MgS$  et  $L_2S_3-MnS$ , du lanthane au gadolinium et des systèmes  $L_2S_3-CaSe$ , du lanthane au dysprosium.

Nous n'avons pas d'information concernant les systèmes  $L_2Se_3-MgSe$ , mais on peut supposer qu'ils présentent comme les précédents, des domaines d'homogénéité d'étendues réduites. Pour comparer ces différents systèmes les uns avec les autres, nous nous sommes appliqués à les préparer dans des conditions identiques.

Tous les systèmes de sulfures ont été préparés à 1200 °C, par union des sulfures constitutants en ampoule de silice scellée. La chauffe a été immédiatement suivie par une trempe à l'eau. Tous les systèmes de séléniures ont été réalisés par un chauffage d'un mélange d'oxyde de terre rare et de carbonate MCO<sub>3</sub> dans l'hydrogène sélénié à 1200 °C, le produit revenant de lui-même à la température ambiante à l'intérieur du four.

Les étendues des domaines d'homogénéité de type  $Th_3P_4$  sont représentées dans les tableaux ci-après à l'aide du coefficient x de la relation générale des solutions solides donnée plus haut, c'est-à-dire par la fraction maximale d'atome M que peut contenir chaque site cationique dans chaque système:

Valeurs de x dans les systèmes de sulfures  $L_2S_3-MS$ (M=Mg ou Mn)

|      | $L \rightarrow$ | La       | Ce       | Pr      | Nd       | Sm         | Gd    | Dy  |
|------|-----------------|----------|----------|---------|----------|------------|-------|-----|
| Μ    |                 |          |          |         |          |            |       |     |
| Ļ    |                 |          |          |         |          |            |       |     |
| Mg   |                 | 0,034    | 0,083    | 0,055   | 0,076    | 0,097      | 0,076 | 0   |
| Mn   |                 | 0,034    | 0,105    | 0,113   | 0,135    | 0,166      | 0,076 | 0   |
| Vale | eurs de         | e x dans | les syst | tèmes d | e séléni | ures $L_2$ | Se₃−C | aSe |

 $L \rightarrow La Ce Pr Nd Sm Gd Dy 0,182 0,158 ? 0,143 0,205 0,205 0,143$ 

Dans le cas de la solution solide  $Pr_2Se_3$ -CaSe, dans laquelle l'ion  $Pr^{3+}$  a sensiblement le même rayon que l'ion Ca<sup>2+</sup>, on n'observe qu'une très faible variation de paramètre d'un bout à l'autre du domaine d'homogénéité, ce qui rend impossible la détermination de son étendue.

Si l'on se rapelle que dans les sulfures, les systèmes correspondants  $L_2S_3$ -CaS donnent des solutions solides allant toutes jusqu'à la limite maximale  $x=\frac{1}{4}$ , on constate que les domaines d'homogénéité type Th<sub>3</sub>P<sub>4</sub> sont moins étendus dans les séléniures que dans les sulfures. Ceci est à rapprocher du fait que, dans les composés stoechiométriques  $L_2X_3$  de type Th<sub>3</sub>P<sub>4</sub>, les séléniures  $L_2S_3$  se rencontrent avec un nombre plus restreint d'éléments (du La au Sm) que les sulfures  $L_2S_3$  (du La au Tb).

Les conditions de formation de la phase  $Th_3P_4$  dans les sulfures de terres rares  $L_2S_3$  et  $ML_2S_4$  ont été étudiées ailleurs (Flahaut, Domange & Patrie, 1962), ainsi que celles d'existence de la phase  $Th_3P_4$  parmi les sulfures, séléniures et tellurures stoechiométriques  $L_2X_3$  (Flahaut *et al.*, 1963). Une vue d'ensemble de ces conditions sera publiée prochainement.

#### Références

ADOLPHE, C., GUITTARD, M. & LARUELLE, P. (1964). C. R. Acad. Sci., Paris, 258, 4773.

- EASTMAN, E. D., BREWER, L., BROMLEY, LE R. A., GILLES, P. W. & LOFGREN, N. L. (1950). J. Amer. Chem. Soc. 72, 2248.
- EASTMAN, E. D., BREWER, L., BROMLEY, LE R. A., GILLES, P. W. & LOFGREN, N. L. (1951). J. Amer. Chem. Soc. 73, 3896.
- FLAHAUT, J., DOMANGE, L., GUITTARD, M. & PARDO, M. P. (1965). Bull. Soc. Chim. Fr. p. 326.
- FLAHAUT, J., DOMANGE, L., GUITTARD, M., PARDO, M. P. & PATRIE, M. (1963). C. R. Acad. Sci., Paris, 257, 1530.
- FLAHAUT, J., DOMANGE, L. & PARDO, M. P. (1964). C. R. Acad. Sci., Paris, 258, 594.
- FLAHAUT, J., DOMANGE, L. & PATRIE, M. (1962). Bull. Soc. Chim. Fr. p. 2048.
- FLAHAUT, J., GUITTARD, M., LORIERS, J. & PATRIE, M. (1959). La Chimie des hautes températures – Second Colloque National, Paris 1957. Ed. C.N.R.S., p. 51.

- FLAHAUT, J., LARUELLE, P., PARDO, M. P. & GUITTARD, M. (1965). Bull. Soc. Chim. Fr., à paraître.
- GOLABI, S. M., FLAHAUT, J. & DOMANGE, L. (1964). C. R. Acad. Sci., Paris, 259, 820.
- GUITTARD, M., BENACERRAF, A. & FLAHAUT, J. (1964). Ann. Chim. 9, 25.
- PATRIE, M., GOLABI, S. M., FLAHAUT, J. & DOMANGE, L. (1964). C. R. Acad. Sci., Paris, 259, 4039.

PARDO, M. P., FLAHAUT, J. & DOMANGE, L. (1963). C. R. Acad. Sci., Paris, 256, 1793.

- PATRIE, M., FLAHAUT, J. & DOMANGE, L. (1964). C. R. Acad. Sci., Paris, 258, 2585.
- GUITTARD, M., SOULEAU, C. & FARSAM, H. (1964). C. R. Acad. Sci., Paris, 259, 2847.
- PICON, M., DOMANGE, L., FLAHAUT, J., GUITTARD, M. & PATRIE, M. (1960). Bull. Soc. Chim. Fr. p. 221.
- ZACHARIASEN, W. H. (1948). Acta Cryst. 1, 265.
- ZACHARIASEN, W. H. (1949). Acta Cryst. 2, 57.

Acta Cryst. (1965). 19, 19

# The Crystal Structure of the Azulene, s-Trinitrobenzene Complex

## BY A.W.HANSON

Division of Pure Physics, National Research Council, Ottawa, Canada

#### (Received 9 November 1964)

The crystal is monoclinic  $P2_1/a$ , with Z=4. Unit-cell constants at -95 °C are a=16.39, b=6.66, c=13.77 Å,  $\beta=96.10^{\circ}$ . The formula is  $C_{10}H_{8},C_{6}H_{3}N_{3}O_{6}$ .

The structure was determined from the three-dimensional Patterson synthesis, and refined by least-squares procedures. The structure is disordered, with about 7% of the azulene molecules adopting an alternative orientation, but this disorder did not seriously limit the accuracy of the analysis.

The azulene molecule is nearly planar, but the s-trinitrobenzene molecule is not. The NO<sub>2</sub> groups are twisted out of the plane of the benzene nucleus by amounts which vary, and which are probably determined by molecular environment. The constituent molecules overlap each other with an average interplanar spacing of 3.33 Å, but two C–N contacts are found to have lengths of 3.30 Å.

## Introduction

The crystal structure of azulene has been shown by Robertson, Shearer, Sim & Watson to be disordered, with the result that the molecular geometry could not be accurately determined (1962). The present study of the complex azulene,s-trinitrobenzene was undertaken as a further attempt to determine the molecular geometry of azulene. Experience with the similar complexes of skatole and indole with s-trinitrobenzene suggested that the work would be useless unless carried out at a reasonably low temperature (Hanson, 1964). There could of course be no guarantee that the structure of the complex is free from disorder. Brown & Wallwork, in a brief account of the structure determination at room temperature, report that the azulene position is disordered to a degree which prevents reasonable refinement (1965). In the present analysis (at  $-95^{\circ}$ C) it is found that about 7% of the azulene molecules adopt an alternative orientation, but that this small degree of disorder does not appreciably limit the accuracy achieved.

## Experimental

Crystal data at  $-95^{\circ}$ C

(Values in parentheses refer to measurements at room temperature).



Fig. 1. Azulene, s-trinitrobenzene.